Large-Scale Bayesian Multi-Label Learning via Topic-Based Label Embeddings
نویسندگان
چکیده
We present a scalable Bayesian multi-label learning model based on learning lowdimensional label embeddings. Our model assumes that each label vector is generated as a weighted combination of a set of topics (each topic being a distribution over labels), where the combination weights (i.e., the embeddings) for each label vector are conditioned on the observed feature vector. This construction, coupled with a Bernoulli-Poisson link function for each label of the binary label vector, leads to a model with a computational cost that scales in the number of positive labels in the label matrix. This makes the model particularly appealing for real-world multi-label learning problems where the label matrix is usually very massive but highly sparse. Using a data-augmentation strategy leads to full local conjugacy in our model, facilitating simple and very efficient Gibbs sampling, as well as an Expectation Maximization algorithm for inference. Also, predicting the label vector at test time does not require doing an inference for the label embeddings and can be done in closed form. We report results on several benchmark data sets, comparing our model with various state-of-the art methods.
منابع مشابه
Leveraging Distributional Semantics for Multi-Label Learning
We present a novel and scalable label embedding framework for large-scale multi-label learning a.k.a ExMLDS (Extreme Multi-Label Learning using Distributional Semantics). Our approach draws inspiration from ideas rooted in distributional semantics, specifically the Skip Gram Negative Sampling (SGNS) approach, widely used to learn word embeddings for natural language processing tasks. Learning s...
متن کاملProximity-based Graph Embeddings for Multi-label Classification
In many real applications of text mining, information retrieval and natural language processing, large-scale features are frequently used, which often make the employed machine learning algorithms intractable, leading to the well-known problem “curse of dimensionality”. Aiming at not only removing the redundant information from the original features but also improving their discriminating abili...
متن کاملLocally Non-linear Embeddings for Extreme Multi-label Learning
The objective in extreme multi-label learning is to train a classifier that can automatically tag a novel data point with the most relevant subset of labels from an extremely large label set. Embedding based approaches make training and prediction tractable by assuming that the training label matrix is low-rank and hence the effective number of labels can be reduced by projecting the high dimen...
متن کاملSparse Local Embeddings for Extreme Multi-label Classification
The objective in extreme multi-label learning is to train a classifier that can automatically tag a novel data point with the most relevant subset of labels from an extremely large label set. Embedding based approaches attempt to make training and prediction tractable by assuming that the training label matrix is low-rank and reducing the effective number of labels by projecting the high dimens...
متن کاملMulti-task Learning of Pairwise Sequence Classification Tasks Over Disparate Label Spaces
We combine multi-task learning and semisupervised learning by inducing a joint embedding space between disparate label spaces and learning transfer functions between label embeddings, enabling us to jointly leverage unlabelled data and auxiliary, annotated datasets. We evaluate our approach on a variety of sequence classification tasks with disparate label spaces. We outperform strong single an...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2015